
A major purpose of the Techni-
cal Information Center is to provide
the broadest dissemination possi-
ble of information contained in
DOE’s Research and Development
Reports to business, industry, the
academic cammunity, and federal,
state and local governments.

Although a small portion of this
report is not reproducible, it is
being made available to expedite
the availability of information on the
research discussed herein.

●

.

LA-l#fk84-~cg

CDlw
PORTIONS OF THIS REPORT AR: ILLEGIBLE. It

LA=UR--84-1343

has been reprdlf , from the best available DE84 011385

copy to permit the broadest oossible avail-
ah!lity.

LOO Alsmos NMIonal Laboratory IS opmlod by W Unwermty of CWfornm for m. Umlod Ststcs Dopartmon! of Enow undof eOntWclW-7405 .ENG.36

TITLE. AN RFQ SIMULATION CODE

AuTHOR(S) Walter Lysenko, AT-6

SUBMITTED TO The 1964 Linear Accelerator Conference, May 7-11, 1984
Darmstadt, Fed. Rep. of Germany

DISCLAIMER

‘1’h!lreportwasProparod w an accountofworkqronsomdby an●gencyoftheUnitadStates
Oovernmont.NeitherthoUnitedStatoaGovernmentnor●ny●gorrcythoroof,nor●nyoftheir
employoec,mak~ anywarranty,expw or implied, or ●uuma ●ny Iogal liability or rocpomi-
bilityforthoaccuracy,completen~,orusofuln~ofanyinformation,apparatus,product,or
proms di4cloaod,orropraswrtsthatid uaowouldnotinl%in~privatelyownod ~hts.Rafor.
wtcoherointoanyspocifiscommercialprorhct,promos,orsmico by tradename, trademark,
manufacturer, orotherwimdoc# not nwawily wnstitute or Implyitsendoraornont,rocorn-
mendation,or favorhtgby thoUnitedStatot(governmentor any ngoncythoroof,TIM YIOW
and opinionsof authorsexprsucdheroindo not n~rily St-toor rofl~tthoaoof the
UnitedStatesOovornmontor●nyagencythereof,

@y @ccoptancoof V’IIt WIICI. Ww publlthmr MCOOWJ.B Wml WW U S oovafnmonl fmms a nofvclcluw-, fo@ty.f144 IICOW to publIst I of WP?oduCO

W publtth.d fOfItI Of WIII CONIWMIOn of 10 ●Ow OlhOfI !0 do W to? U 8 00v0?nmtnl PufP0409

k~&!!dk)~os L.sAlamcs,NewMexi.08754~
LosAlamos NationalLaborator

m

About This Report
This official electronic version was created by scanning the best available paper or microfiche copy of the original report at a 300 dpi resolution. Original color illustrations appear as black and white images.

For additional information or comments, contact:

Library Without Walls Project
Los Alamos National Laboratory Research Library
Los Alamos, NM 87544
Phone: (505)667-4448
E-mail: lwwp@lanl.gov

ANRFQ SIMULATION CODE*

U. P. Lysenko, AT-6, MS-H829
Los Alamos National Laboratory, Los Alamos, New Mexico 87545 USA

a!!u
We have developed the RFQL18 simulation system to

provide a means to systematically generate the new ver-
sions of radio-freq~ency quadruple (RFQ) linac simula-
tion codes that are required by the constantly changing
neejs of a research environment. This Integrated sys-
tgm simplifies keeping track of the various versions of
the simulation code and makes it practtcal to maintain
complete and up-to-date documentation. In this scheme,
there Is a certain standard version of the simulation
code that forms a library upon which new versions are
built. To genertte a new version of the simulation
code, the routines to be modified or added are appended
to a standard command file. which contains the comnands
to compile the new routines and iink them to the rou-
tines in the library. The library itself iS rarely
changed. Whenever the library is mod:fied, however,
this modification is seen by all vers:~c$ of the simu-
lation code, which actually exist as dlfr;rent versions
of the command file. All code is w’ittw, according to
the rules of structured prograrmning. Modularity is en-
forced by not using COI+MONstatements, simplifying the
relation of the data flow to a hierarchy diagram. Sim-
ulation results are similar to those of the PARMTEQ
~Ode, as expected, because of the similar physical
model. Different capabilities, such as those for gen-
erating beams matched in detail to the structure, are
available in the new code for help in tecting new ideas
in designing RFQ linacs.

Introduction

We desired a new RFQ simulatio)lcode to test some
new ideas for designing RFQ linacs. Frequent notifica-
tions to the code would be necessary in this eppllca-
tion. Our code development work considered, from the
very beginning, the problem of producing a software
product with the required flexibility. Ease ofmodifi-
cation and of managing the many versions that would in-
evitably arise were the major concern for the program-
ming effort.

From the physics point of view, the primary con-
cern was the ease of changing the space-charge and
external-force computations tn the simulations, Also,
we thought it important to be able to generate particle
phase-space distributio!,s,that are matched in detail
to the accelerator structure, and to terify matched
conditions. This capability is useful both to check
for numerical emittance-growth effects md to prevent
mismatch effects from obscuring other effects under
study.

We achieved our goals by formin a library file
containing what wc call the Standbr1 version of the
simulation code. New versions of the $imdlation code
can be generated, as required, by means of consnand
files that contain consnandsto compilr any new or modi-
fied subroutines and link them to the standdrd versions
in the librlry file. This collection of files we call
the RFQLIB system, Tha rules of structured programming
were followed in all coding to make the inevitabl? mod-
ifications easy to mke.

Organization of the RFIJLIBSystem

There are four kinds of files in the RFOL19
system,

‘This wurk was supported by the US Dept. of Oefense,
Oef@nso Advanced Rcstarch Projects Agency, and Ballis-
tic MissilQ Oefenso Advanced Technology Cmter.

1. Library File (source or object code). This
file contains the main program and all the subroutines
for the standard version of the simulation code. The
object code can be loaded and run but is !“eallymeant
to be used as a library with the consnandfiles.

2. Comnand Files. These files contain source
code for routines that have been changed from the
library version. They also contai!l the corrnands
necessary to compile the new routines and to link tnem
to the library routines to produce an executable code.

3. Dda Files. There are three types of data
files providing information on the iriputdistribution,
accelerator parameters, and simulation parmeters.

4. Output Programs. These programs process out-
put from the simulation codes, usually to generate
graphical output.

The standard cmwnand file is called RFQRZP*C. We
use one of the available text editors as a contr~!ler
to execute the commands in the command file. The
standard conswandfile contains no source code except
for a durrmnyroutine that references a routine in the
library file, so that executin
file results in an executable !i;;: c%’?::”;FQ’R”’;:
consisting of the main program and subroutines in the
library file. If a new version of the simulation corJe
is desired, the n-w subroutines are appended to the
standard consnandfile. Any subroutines in the comnand
file that have the same name as those in the library
wI1l replace those in the library when the executable
code is produced. The library itself is not meant to
be changed often. When a change is Made to the
library, however, these changes are seen by all ver-
sions of the simulation code. Different versions of
the simulation code are stored as different versions
of the command file.

The code structure for the standard version is
shnwn in fig. 1. The important feature of this struc-
ture is that the external or space-charge forces can
be changed without any knowledge of beam dynamics or
numerical methods. This modularity is a feature of
structured progranvrdng.

{

INTEG(y,t)
MAIN start
start ●

read data ●

gen initdisty

1

EXT(y,t)
do t=t totf ca;l SC(y) start
::jld$lwyot)- “ ●

9 ●

tnd
ca;l EXT(y,t) ca;l PARAM(s)

* ●

● ●

● ●

e id ~ end

INTEG(y,t) Integrates equations of motion
SC(Y) Comput@s spact charge forcm

k]
EXT t Computts txtcrnal forcos
PAR Is tnterpolatm RFQparametws from table

Fig, 1. H{gh-lwel code structwre for th~ stand~rd
version of the simulation cadc,

Progrmnlng Aspects Simulation Examples

,
Let us describe what we mean by structured Pro-

grannningas it is applied to this project. Originally,
structured prograrraningwas a management technique that
allowed a number of people to work simultaneously on a
large software project. But structured progrnnsniugis
useful even for small one-man projects because it makes
programs more understandable and easy to modify. These
are precisely the qualities we desire in a code that is
to be constantly modified to meet changing require-
ments. One way of stating the rules of structured pro-
graming is the following: Programs must be modular
and the modules must be connected in a simple manner.

A simple thing to do is to consider the FORTRP.N
subprograms as modules of the overall program. Then,
one consequence of our rules is that COMMON statements
are not allowed. In a program with COMMON statements,
it is impossible to determine where variables are
defined or redefined without a detailed analysis of
the whole program. Suppose we have a program with PO
COMMON statements, such as one of the simulation codes
In the RFQLIB system. Then a hierarchy diagram (not
shown in this paper) containing data-flow information
can be extremely useful. The main program is shown at
the top of the diagram and the most deeply nested sub-
programs are at the bottom. The dunnry argument list
associated with each subprogram is shown on the dia-
gram. If any actual argument list is different from
the dunnnyargument list, the actual argument list is
shown associated with the line connecting the calling
and the called subprograms. To modify one of the sub-
programs, only the code for the given subprogram needs
to be examined. How the subprogram relates to the rest
of the program can be learned from looking at the hier-
archyldata-flow diagram.

Within a subprogram, a consequence of our rules is
that GO TO statements arc not allowed. (Even better is
to elir,linatestatement labels.) The reason is that a
section of code containing a statement label cannot be
understood without looklng at all the code tn the given
subprog am to see if it contains a GO TO statement
pointing to the statement label. The reason for the
rules again is the same: To understand a section of
code (necessary if modifications are required), it
should not be necessary to look in detail at all the
rest of the code. In our project, we found that the
higher level rule (no COMMON) was more important than
the lower level rule (no GO TO).

Physics hnd Numerical Aspects
of the Standard Version

Comparison with PARMTEQ

We ran a simulation of the accelerator test stand
(ATS) RFCI Iinac at Los Alamosl to compare the new
code with PARMTEQ, the standard RFQ simulation code at
Los Alamos, We found very good agreement. The trans-
mission factor for the standard-design input beam was
92% for the PARMTEQ run and 94% for the new coae.
Emittances differed by less than 5%, a value within the
statistical accuracy of representing the phase-space
distribution by a finite number of particles. The
fundamental difference between the two codes is that
PARMTEQ has free-space boundary conditions and the new
code has a conducting wall. The presence of the con-
ducting wall dec~eased the dxial space-charge fieclaby
several per cent at most. This was not a large-enough
effect to affect the transmission factor or final
emittance.

Matched and Acceptance Beams

The generation of phase-space distributions
matched in detail to a periodic structure can be done
by adiabatic deformation.z The previous work did not
include space-chavge forces. The new code has provi-
sions for using this method to generate high-brightness
beams matched :0 an ‘%FQstructure. Such a matched beam
has teen generated for the ATS RFQ matched to a point
1 m from the i,lput. This was a 100-mA beam with a nor-
malized rms transverse emittance (area in X-px pPase
space, divided by mnc) of 0.2 mm”mrad. When traced
through an exactly periodic structure corresponding to
the l-m point of the RFQ, the matched beam ~s very
nearly periodic. When we consider rms beam sizes that
are one rf period apart, the beam-size fluctuations are
less than 2%.

In the presence of space charge, the acceptance ?,f
an accelerator is not unique. He can define an acce\!-
tance distribution to be one that, if injected into tlie
accelerator, results in a beam well matched over the
whole length of the accelerator. Because the parame-
ters at the beginning of the accelerator are rapidly
changing, obtaining & baam matched to a periodic struc-
ture corresponding to the RFQ entrance does not work
well. We obtained a good acceptanc~ distribution by
taking the beam matched to the l-m poht of the k“”
and tracing it backward to ttre a~celerator entrancl
The 2D phase-space projections of this acceptance bean
are shown in fig. 2. Also shown f. comparison is the
standard input been used in $t.aRIQ design process.

The standard version of the simulat~on code is a
Particle-in-cell code computing space charge on a uni-
form r-z mesh, The boundary condition~ for the Poisson
solver are a conducting circular cylinder at a given
radius and periodic boundary conditions in the axial
direction with period OX. Time is the independent ~.lm ~!m ~=iH
variable. The particle coordinates and momenta and the 0s O* o @
position and velocfty of the synchronous particle are
the dependent var(ables, using x-, y-, z-c~ordinates,
The equations are integrated using a first-order,
explicit, symplectic integrator.

There are certain features we built tnto the simu-
lat~on code that we considered important for our RFQ

~,:~1 ~j~l ~,;{

desi n work. The ability to create beams matched in
!

-SOD co -0 0 6
d??a 1 to the accelerator structure was accomplish~d by s hd r ** * mull

facilitatesfor adiabatic deformation as described in
the example below. Th~s feature required the introduc-
tion of nonphysical forces into ourrnodel of theRFQ,

Fit).2. Phase-space
!
rejections for the rrcceptance

beam (top rcw and the standard input beam for
the ATS RFQ (bottom row).

.

The acceptance beam has a transmission factor of 100%
(no particles lost) and practically no emlttance
growth. Of course, creating such beams is not practi- 1.
cal in the laboratory. We believe the utility of such
computations is in desiqnfng the low-energy part of RFQ
linacs. He can vary theRFQ parameters and compute the
acceptance distribut.io.lsfor the various cases, choos-
ing the case for which the acceptance distribution is
closest to a physically attainable distribution. 2.

Discussion

The new RFQLIB simulation system has been designed
to be easily extended to include new versions of the
code as new requirements arise. liebelieve this tech-
nique to be very successful. Storing a standard ver-
sion of the simulation code as a library simplifies the
maintenance of the various versions of the code. Be-
cause of the integrated nature of this system, a single
manual documenting the whole system has been written.’

The capability of generating matched distributions
by adiabatic deformation is an important feature of the
standard version of the simulation code. This allows
us to factor out input beam effects from accelerator-
structure characteristics. For example, we have
learned that the ATS RFQ design can transmit a 100-mA,
0.2 mn”mrad emittance beam with no transmission loss,
provided the input distribution is properly chosen.

3.

References

E. A. Wadlinger, J. P. Farrell, and H. O. Oogliani,
“A High-Brightness Neoative Hydrogen Linear Accel-
erator,” 7th Conf on Application of Accelerators in
Research and Industry, Oenton, Texas, November 7-
10, 1982.

W, P. Lysenko, “Matching Bunched Beams to Alternat-
ing Gradient Focusing Systems,” IEEE Trans. Nucl.
Sci.fl, p. 2516 (1981).

‘M. P. Lysenko, “The RFQ Simulation Code Library
RFQL18 and Associated Codes,” Los Alamos National
Laboratory unpublished report ATN-R4-1 (January
1984).

